

EPA Method 8270 Semivolatile Organic Compounds Analysis on the Pegasus[®] BT: A Benchtop GC-TOFMS

LECO Corporation; Saint Joseph, Michigan USA

Key Words: EPA Method 8270, GC-TOFMS, Sensitivity, Linear Dynamic Range, Robust, Reproducible

1. Introduction

The United States Environmental Protection Agency (US EPA) Method 8270 is used to determine the concentration of semivolatile organic compounds in extracts prepared from solid waste matrices, soils, air samples, and water samples by gas chromatography-mass spectrometry (GC-MS). The target compounds cover a large number of compound classes including acids, bases, and neutrals over a wide dynamic range typically from 0.1 to 50 ppm. The quality control criteria are quite rigorous, and in the majority of laboratories, must be met routinely for high throughput analysis. LECO has introduced a new GC Time-of-Flight Mass Spectrometer (GC-TOFMS) that exceeds the analytical demands of this method enabling the user to run split injections and still meet the sensitivity requirements of EPA Method 8270. A unique feature of the Pegasus BT is the patented open-style StayClean[™] ion source that significantly increases instrument uptime by minimizing source maintenance. This application note details the performance of the Pegasus BT for EPA Method 8270, and demonstrates how to meet and exceed the method requirements.

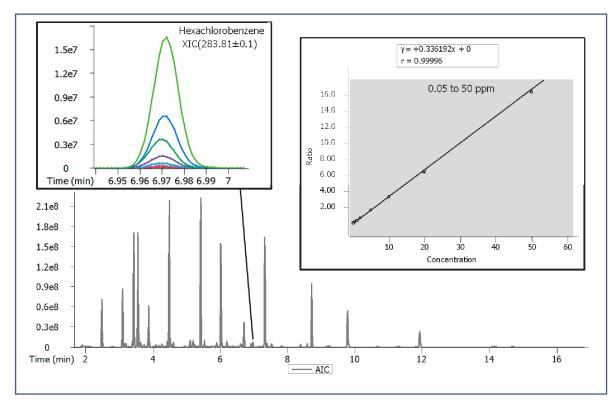


Figure 1. Extracted ion chromatogram (XIC) of the quant mass for hexachlorobenzene (HCB) from 0.05 to 50 ppm and its corresponding calibration curve, with the Analytical Ion Chromatogram (AIC) of a 1 ppm standard split 20:1 indicating where HCB elutes in the chromatogram.

2. Experimental

Analytical standards were purchased from Restek (Bellefonte, PA) including 8270 MegaMix Standard (Cat # 31850), 8270 Matrix Spike Mix (Cat # 31687), CLP 04.1 BNA Surrogate Mix (Cat # 31493), SV Internal Standard (Cat # 31206), and GC-MS Tuning Mixture (Cat # 31615). A 10 point dilution series of the 8720 MegaMix Standard was prepared from 0.05 ppm to 50 ppm, spiked with 20 to 30 ppm of the BNA Surrogate Standard, and 20 ppm of the SV Internal Standard. The GC-MS Tuning Mixture was prepared at 50 ppm, and the 8270 Matrix Spike Mix was prepared at 20 ppm.

Gas Chromatograph	bas Chromatograph LECO L-Pal3 Autosampler with Agilent 7890B GC					
Injection	GC inlet, split 20:1 @ 270 °C					
Carrier Gas	He @ 1.4 ml/min, Constant Flow					
Column	ZB-SemiVolatiles, 30 m x 0.25 mm ID x 0.25 μ m df (Phenomenex, Torrance, CA)					
Oven Program	70 °C (1 min), to 285 °C @ 28 °C/min, to 305 °C @ 3 °C/min, to 320 °C @					
	30 °C/min (1 min); Total time: 16.5 min					
Transfer Line	300 °C					
Mass Spectrometer	LECO Pegasus BT					
Ion Source Temperature	250 ℃					
Mass Range	30-650 m/z					
Acquisition Rate	10 spectra/s					

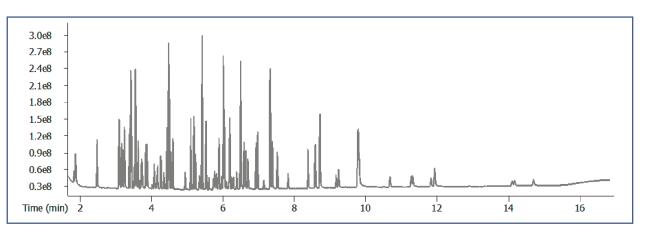


Figure 2. Total ion chromatogram (TIC) of a 5 ppm standard containing 90 components.

EPA Method 8270 allows users to use split injections if the mass spectrometer is sensitive enough to meet the method requirements. Figure 2 shows the TIC of a 5 ppm 8270 MegaMix standard split 20:1. There are many advantages of using a split injection instead of splitless, including improved chromatographic peak shape, less reactivity in the injection port, and improved uptime as less inlet maintenance and column trimming are required.

3. Instrument Tuning and System Performance Evaluation

Table 2. DFTPP Tuning Results for 10 Replicate Injections

Mass	Ion Abundance Criteria	Mean	STDEV	Min	Max	Criteria
51	10-80% of Base Peak	64.5	0.25	64.1	64.9	PASS
68	< 2% of mass 69	1.93	0.04	1.87	1.98	PASS
70	< 2% of mass 69	0.38	0.01	0.37	0.40	PASS
127	10-80% of Base Peak	52.1	0.18	51.9	52.4	PASS
197	< 2% of mass 69	0.22	0.03	0.19	0.28	PASS
198	Base Peak, or $> 50\%$ of Mass 442		Base Peo	ak		PASS
199	5-9% of mass 198	6.73	0.04	6.68	6.77	PASS
275	10-60% of Base Peak	23.0	0.08	22.9	23.1	PASS
365	> 1% of mass 198	1.90	0.02	1.86	1.92	PASS
441	Present but < 24% of mass 442	13.2	0.03	13.15	13.25	PASS
442	Base Peak, or > 50% of mass 198	76.5	0.3	76.1	76.9	PASS
443	15-24% of mass 442	19.5	0.08	19.4	19.6	PASS

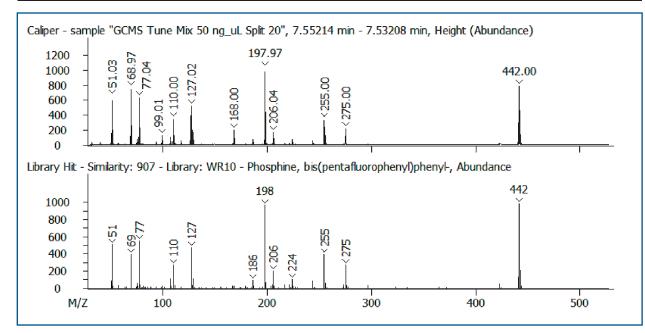


Figure 3. The Caliper (raw) mass spectrum at the apex of the DFTPP chromatographic peak with a one point background subtraction, and the corresponding library match spectrum for DFTPP, show that the Pegasus BT routinely passes DFTPP tuning.

Ten replicate injections of the GC-MS Tuning Mixture under the experimental conditions described in Table 1 were used to show that all of the instrument tuning and performance criteria for the method were met (Table 2, and Figures 3 and 4). DFTPP passed using the single point approach, but also passed using the average over the entire peak (not shown). The sensitivity of the instrument enabled split injections, allowing the injection port inertness and column performance checks to pass without difficulty.

Life Science and Chemical Analysis Solutions

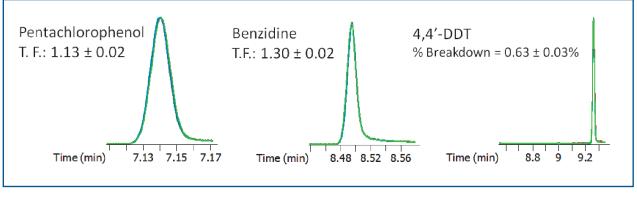


Figure 4. Check of the GC column performance and injection port inertness.

4. Quantitation in ChromaTOF[®] 5.0: Initial Calibration

A multipoint calibration curve was generated for the 84 compounds in the 8270 MegaMix Standard from 0.05 ppm to 50 ppm, injected in triplicate (Figure 5). Average response factor (AvgRF) was used as the default mode of quantitation as long as the relative standard deviation of the RF (% RSD RF) was less than 20% and the percent difference of the calculated to the theoretical value (%D) was less than 20%. Alternatively, linear regression with a correlation coefficient (r) greater than 0.995 can be used, provided the %D is less than 20%. The results are shown in Table 3. Average RF was used for all but one compound (benz[a]anthracene).

Figure 5. Quantitation using ChromaTOF 5.0 to evaluate calibration data for 8270 compounds. The highlighted compound is 2-Nitrophenol.

Table 3. EPA Method 8270 Calibration Curve Data for 84 Compounds from 0.05 to 50 ppm

Name	Туре	R.T. (min)	Avg RF	% RSD RF	r	
N-Nitrosodimethylamine	Analyte	1.837	0.577	8.425		
Pyridine*	Analyte	1.975	1.174	7.698		
2-Fluorophenol	Surrogate	2.475	0.367	5.14		
Phenol-d6	Surrogate	3.090	0.581	3.92		
Phenol*	Analyte	3.100	0.314	7.758		
Aniline	Analyte	3.163	1.304	3.669		
Bis(2-chloroethyl) ether	Analyte	3.198	1.025	5.732		
2-Chlorophenol-D4	Surrogate	3.242	0.373	3.895		
2-Chlorophenol	Analyte	3.253	0.398	7.524		
1,3-Dichlorobenzene	Analyte	3.380	1.032	6.147		
1,4-Dichlorobenzene	Analyte	3.437	1.075	7.583		
Benzyl alcohol	Analyte	3.513	0.234	5.162		
1,2-Dichlorobenzene-D4	Surrogate	3.547	0.98	0.914		
1,2-Dichlorobenzene	Analyte	3.558	1.01	7.825		
2-Methylphenol	Analyte	3.587	0.423	2.733		
Bis(2-chloro-1-methylethyl)ether	Analyte	3.625	1.943	5.703		
3/4-Methylphenol	Analyte	3.712	0.378	3.9		
N-Nitrosodi-n-propylamine	Analyte	3.729	0.508	7.917		
Hexachloroethane	Analyte	3.837	0.429	5.399		
Nitrobenzene-D5	Surrogate	3.867	0.522	3.019		
Nitrobenzene	Analyte	3.882	0.216	6.85		
Isophorone	Analyte	4.079	1.03	6.196		
2-Nitrophenol	Analyte	4.150	0.098	5.204		
2,4-Dimethylphenol	Analyte	4.167	0.289	5.908		
Bis(2-chloroethoxy)methane	Analyte	4.257	0.8	3.017		
2,4-Dichlorophenol	Analyte	4.345	0.19	5.907		
1,2,4-Trichlorobenzene	Analyte	4.427	0.335	2.007		
Naphthalene	Analyte	4.499	1.146	4.684		
4-Chloroaniline	Analyte	4.537	0.772	7.899		
Hexachlorobutadiene	Analyte	4.600	0.156	1.946		
4-Chloro-3-methylphenol	Analyte	4.944	0.251	5.033		
2-Methylnaphthalene	Analyte	5.097	0.588	5.282		
1-Methylnaphthalene	Analyte	5.184	0.578	5.149		
Hexachlorocyclopentadiene	Analyte	5.232	0.326	2.02		
2,4,6-Trichlorophenol	Analyte	5.337	0.089	6.534		
2,4,5-Trichlorophenol	Analyte	5.364	0.101	9.49		
2-Fluorobiphenyl	Surrogate	5.415	1.771	3.367		
2-Chloronaphthalene	Analyte	5.524	1.554	3.336		
2-Nitroaniline	Analyte	5.607	0.127	7.753		
1,4-Dinitrobenzene	Analyte	5.729	0.056	7.153		
Dimethyl phthalate	Analyte	5.767	0.552	6.982		
1,3-Dinitrobenzene	Analyte	5.790	0.104	7.962		
2,6-Dinitrotoluene	Analyte	5.819	0.171	7.38		
1,2-Dinitrobenzene	Analyte	5.864	0.072	8.875		
Acenaphthylene	Analyte	5.889	2.2	7.71		

continued on next page

Life Science and Chemical Analysis Solutions

Table 3. EPA Method 8270 Calibration Curve Data for 84 Compounds from 0.05 to 50 ppm (Continued)

Name	Туре	R.T. (min)	Avg RF	% RSD RF	r
3-Nitroaniline	Analyte	5.965	0.173	6.112	
Acenaphthene	Analyte	6.040	1.341	2.539	
2,4-Dinitrophenol [‡]	Analyte	6.057	0.04	10.238	
4-Nitrophenol	Analyte	6.095	0.112	5.813	
2,4-Dinitrotoluene	Analyte	6.170	0.166	7.711	
Dibenzofuran	Analyte	6.192	2.148	1.868	
2,3,5,6-Tetrachlorophenol	Analyte	6.255	0.08	10.589	
2,3,4,6-Tetrachlorophenol	Analyte	6.292	0.089	11.549	
Diethyl Phthalate	Analyte	6.385	0.483	8.33	
4-Chlorophenyl phenyl ether	Analyte	6.490	0.671	3.345	
Fluorene	Analyte	6.492	1.249	6.793	
4-Nitroaniline	Analyte	6.497	0.186	5.994	
4,6-Dinitro-2-methylphenol	Analyte	6.525	0.052	8.015	
Diphenylamine	Analyte	6.592	1.097	4.717	
Azobenzene	Analyte	6.630	0.289	7.106	
2,4,6-Tribromophenol	Surrogate	6.700	0.079	6.93	
4-Bromophenyl phenyl ether	Analyte	6.920	0.438	8.076	
Hexachlorobenzene	Analyte	6.970	0.336	2.276	
Pentachlorophenol*	Analyte	7.140	0.038	11.186	
Phenanthrene	Analyte	7.337	1.335	4.781	
Anthracene	Analyte	7.382	1.828	3.421	
Carbazole	Analyte	7.519	1.436	3.42	
Dibutyl phthalate	Analyte	7.820	0.357	10.856	
Fluoranthene	Analyte	8.379	1.479	1.563	
Pyrene	Analyte	8.579	1.542	3.832	
p-Terphenyl-d14	Surrogate	8.712	0.52	8.99	
Benzyl butyl phthalate	Analyte	9.164	0.141	9.953	
Bis(2-ethylhexyl) adipate	Analyte	9.234	0.131	9.617	
Benz[a]anthracene	Analyte	9.767			0.9987
Bis(2-ethylhexyl)phthalate *	Analyte	9.791	0.239	10.425	
Chrysene	Analyte	9.811	1.379	4.165	
Di-n-octyl phthalate	Analyte	10.676	0.279	7.858	
Benzo[b]fluoranthene	Analyte	11.264	1.041	6.505	
Benzo[k]fluoranthene	Analyte	11.309	1.114	7.535	
Benzo[a]pyrene	Analyte	11.821	0.896	7.607	
Indeno[1,2,3-cd]pyrene	Analyte	14.094	0.633	8.146	
Dibenz[a,h]anthracene	Analyte	14.164	0.704	7.091	
Benzo[ghi]perylene	Analyte	14.691	0.926	7.95	

*The 0.05 ppm standard was not included in the calibration curve because the %D was greater than 20%. *The detection limit was 0.2 ppm for 2,4-Dinitrophenol.

The calibration data demonstrate that the instrument meets the method requirements, and is linear over 4 orders of dynamic range. Concentrations were determined for an 8270 Matrix Spike using this calibration data and the absolute mean %D was 5.7% with a range from -14.5 to 18.5% for all 84 compounds, validating the calibration data acquired.

5. Conclusion

This application note demonstrates that LECO's *Pegasus* BT meets or exceeds the EPA Method 8270 requirements for instrument performance. The sensitivity surpasses what most laboratories are currently achieving for this method, expanding the typical linear dynamic range, and enabling split injections for increased uptime and sample throughput. The *StayClean* ion source will further increase uptime as it is extremely low maintenance. Another added benefit occurs because the *Pegasus* BT is a Time-of-Flight MS, so a user also has the ability do non target or retrospective analysis at the same time without spending time and resources reacquiring data.

LECO, Pegasus, ChromaTOF, and StayClean are trademarks of LECO Corporation.

LECO Corporation | 3000 Lakeview Avenue | St. Joseph, MI 49085 | Phone: 800-292-6141 | 269-985-5496 info@leco.com • www.leco.com | ISO-9001:2008 | HQ-Q-994 | LECO is a registered trademark of LECO Corporation.