Rapid Analysis of Spearmint Oil by GC-TOFMS

LECO Corporation; Saint Joseph, Michigan USA

Key Words: GC-TOFMS, Flavor, Minor Components

1. Introduction

Spearmint oil is widely used as a flavoring additive for a variety of manufactured foods. Minor variations in spearmint oils from different sources can significantly alter the flavor and ultimately the quality of a product. Consequently, careful analysis of the oil components is important to ensure the manufacture of consistent products over time.

Essential oil analyses are commonly performed using gas chromatography (GC) with flame ionization detection (FID). However, this approach can require lengthy data acquisition of an hour or more to allow for complete chromatographic resolution of the individual components.

Alternatively, spearmint oil analyses using fast GC techniques combined with the LECO Pegasus II Time of Flight Mass Spectrometer (TOFMS) are finished in onetenth the time. Fast spectral acquisition rates (up to 500 spectra per second) allow for unique and automated spectral deconvolution of overlapping chromatographic peaks. Even minor components coeluting with the major analytes in an oil are detected. The resulting mass spectra coupled with retention index information are used to identify individual components.

2. Experimental Conditions

General GC-TOFMS conditions were established for a variety of essential oil extracts. These conditions, outlined below, were used without further optimization to analyze a sample of spearmint oil¹, resulting in a total acquisition time of 2.3 minutes. Automated data processing and library searching against both the NIST and Terpene Essential Oil² mass spectral databases resulted in 61 identified components.

Table 1. GC an	d MS	Conditions	for a	2.3	Minute	Analysis of
Spearmint Oil.						

Detector:	LECO Corporation Pegasus II Time-of-Flight Mass Spectrometer
Transfer Line:	300°C
Source:	200°C
Acquisition Rate:	30 spectra/sec
Stored Mass Range:	35 to 400u
GC:	Hewlett Packard [®] 6890*
Column:	DB-5 4 m x 0.1 mm ID, 0.1 µm phase film
Oven:	40°C for 0.5 min., then to 280°C at 75°C/min., hold for 1 min.
Injector:	290°C
Carrier Gas:	Helium, 2.0 ml/min. constant flow
Sample:	No preparation required, 0.1 µL split (200:1) injection.

*HP6890 GC is equipped with fast oven temperature ramp capabilities and a high pressure EPC module.

3. Results

The data file was processed immediately after acquisition using automated Peak Finding, spectral deconvolution and library searching of the analytes. The unique Peak Finding algorithm locates even minor components coeluting with the primary component of spearmint oil. Figure 2 below shows mass chromatograms for three peaks on the tailing edge of the Carvone peak. The peaks are located and their spectra are automatically deconvoluted by the Peak Find and Deconvolution algorithms. The resulting deconvoluted spectra match the library spectra with similarities greater than 700 for even the most minor component.

Figure 2. Automated Peak Finding Locates Three Minor Components on the Tailing Edge of Primary Component Carvone in Spearmint Oil. The Total Ion Chromatogram (TIC) on the left and selected ion chromatogram on the right show the peak positions.

Peak	Name	R.T. (sec.)	Similarity	Reverse	Hit] [Peak	Name	R.T. (sec.)	Similarity	Reverse
1	Butanal, 3-methyl-	5.98	838	840	1	1 1	32	4-Terpineol	71.58	874	874
2	Furan, 2-ethyl-	7.08	893	897	1	1 1	33	Dihydrocarveol	76.53	875	887
3	1-Butanol, 2-methyl-	8.68	773	793	1	1 [34	trans-Piperitol	78.13	542	843
4	Butanoic acid, 2-	10.93	839	902	1	1 [35	Carvone	79.73	905	926
	methyl-, methyl ester					[36	Carvone oxide, trans-	82.93	676	683
5	2-Hexenal	18.23	757	883	1] [37	p-Mentha-1,8-dien-3-	83.33	789	832
6	3-Hexen-1-ol	19.03	884	904	1			one			
7	2-Hexen-1-ol, (E)-	20.83	720	801	1	1 [38	Carvone oxide, cis-	83.78	863	873
8	n-Hexanol*	21.33	767	851	1] [39	Dihydrocarvyl acetate	89.18	885	907
9	Furan, 2,5-	25.63	744	859	1	1 [40	Piperitenone*	89.88	748	889
	diethyltetrahydro-						41	Carvyl acetate	90.08	716	735
10	α-Pinene	33.53	933	936	1		42	Eugenol	91.83	823	848
11	Camphene	36.38	853	909	1	1 [43	cis-Carvyl Acetate	92.73	890	892
12	Thuja-2,4(10)-diene*	37.78	595	825	1	1	44	α-Copaene*	93.93	864	907
13	β-Pinene	41.98	924	925	1	1 [45	β-Bourbonene	94.88	886	892
14	1-Octen-3-ol*	44.18	739	776	2	1 [46	β-Elemene*	95.63	881	926
15	β-Myrcene	46.13	899	899	1	1 1	47	cis-Jasmone	95.88	854	862
16	3-Octanol	47.23	858	897	1	1 [48	α-trans-Bergamotene*	96.93	804	868
17	Octanal	48.08	756	841	1	1 1	49	Caryophyllene	98.18	880	880
18	Limonene	52.38	842	857	1	1 1	50	γ-Muurolene*	99.13	842	886
19	Benzene	53.13	837	866	1	1 1	51	α-Humulene*	101.38	862	904
	acetaldehyde*						52	β-Farnesene	102.38	871	872
20	cis-β-Ocimene*	53.53	899	925	1		53	Germacrene D	102.63	867	899
21	trans-β-Ocimene*	54.93	896	929	1		54	cis-v-Cadinene*	104.23	814	849
22	γ-Terpinene	55.93	876	899	1	1 1	55	Butanoic acid 3-	104 83	759	816
23	cis-Sabinenehydrate	57.13	853	931	4	1		methyl-, 2-phenylethyl	10 1100		0.0
24	Terpinolene	59.93	901	922	1			ester			
25	trans-Sabinenehydrate	61.28	833	913	4	1 1	56	Bicyclogermacrene*	105.68	872	920
26	Linalool*	62.13	751	871	1	1 1	57	Germacrene A*	106.43	857	903
27	cis-p-Menth-2-en-1-ol	64.28	820	830	3] [58	α-Farnesene	107.28	796	816
28	Octanol acetate*	65.73	795	846	1] [59	δ-Cadinene*	108.28	826	885
29	cis-Verbenol	67.38	733	747	1]	60	Carvophyllene oxide	113.43	701	871
30	Menthone	68.33	830	841	2	j ŀ	61	Viridiflorol	114.33	856	858
31	Pinocarvone*	69.18	788	832	1	J					

Table 2. Compound Name, Retention Time (RT)	, Forward and Reverse	Spectral Similarity Indices ,	and Library Hit Number	for Spearmint
Oil Analysis.				

Hit

*Analyte found in the Essential Oil MS library. All other analytes were identified in the NIST MS Database.

Figure 3. Automated Spectral Deconvolution Allows the Spectra of Overlapping Chromatographic Peaks to be Determined Individually Even When the Peaks Are Minor Components Coeluting With Major Components in the Oil. The top spectrum for each peak is the Pegasus II acquired spectrum. The bottom spectrum is the library spectrum.

4. Conclusions

General conditions for rapid flavor and fragrance analyses were used to analyze a sample of spearmint oil in just 2.3 minutes. The Peak Find and Spectral Deconvolution algorithms unique to the Pegasus II locate even minor components in the oil and significantly reduce data processing time. The entire analysis is complete in less than one-tenth the time required using traditional approaches.

5. Acknowledgements

¹Thanks to Kathleen K. Webb and A.M. Todd Company for providing a sample of spearmint oil.

²Robert P. Adams. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy. Allured Publishing Corporation, Carol Stream, IL. 1995.

LECO Corporation • 3000 Lakeview Avenue • St. Joseph, MI 49085 • Phone: 800-292-6141 • Fax: 269-982-8977 info@leco.com • www.leco.com • ISO-9001:2000 • No. FM 24045 • LECO is a registered trademark of LECO Corporation.